

Mars Sample Return Lander Mission Concepts

MSR Campaign Architecture Elements Under Study

Sample Caching Rover (Mars 2020)

Sample acquisition and caching

Sample Retrieval Lander

- Fetch Rover
- Orbiting Sample container (OS)
- Mars Ascent Vehicle

Earth Return
Orbiter

- Capture/Containment Module
- Earth Return Module

Mars Returned Sample Handling

- Sample Receiving Facility
- Curation
- Sample science investigations

Flight Elements

Ground Element

MSR Mission Scenario and Roles*

26-26-31 Campaign Timeline

*Timeline is illustrative, not exact

- SRL takes a Type III transfer to land in Northern spring, avoiding dust storm season and improving EDL atmosphere
- ERO takes a SEP-assisted ½ revolution transfer and takes ~14 months to spiral to low orbit from the elliptical post-MOI orbit. The last few months of spiraling include relay support for SRL surface mission
- SRL surface mission is around 8 months long, with 5 allocated to fetching
- Rendezvous, capture, and payload operations are around 5 months long
- Return transfer is entirely EP and takes around 2 years (including spiral)

Key MSR Technology Needs

Sample Retrieval Lander

Mars Ascent Vehicle

Sample Fetch Rover

Orbiting Sample (OS)
Container

Earth Return Orbiter

Rendezvous and Capture

Containment Assurance

Earth Entry Vehicle

MSR Sample Retrieval Lander Major Element Concepts

Lander Concept Options Mission Functions

Mission Functions:

- Land on Mars using TRN
 - Entry, Descent and Landing (EDL) is common to M2020/MSL with specific possible augmentations
- Deploy the Sample Fetch Rover
- Maintain the lander and MAV within safe operating conditions
- Once the SFR returns with sample tubes, SRL must:
 - Transfer tubes to the Orbiting Sample (OS) container in the MAV Payload Assemby (MPA), using the Sample Transfer Arm (STA)
 - Close the MPA on the MAV
 - Prepare the MAV for launch (heat and erect)
 - Launch the MAV and eject the OS into low Mars orbit for retrieval by the Earth Return Orbiter (LMO)

Potential EDL Augmentations

- Augmentations likely to be needed to accommodate larger landed mass and achieve mission objectives
- Augmentations being considered
 - 4.7m spherical heatshield
 - Higher Mach # parachute deploy
 - Start powered descent at higher altitude
 - Large divert
 - Terminal hazard avoidance

Lander Concept Options Key Studies

- Accommodation of MAV (400 kg) and Fetch Rover (120 kg) on lander in aeroshell, with volume and mass margins
- MAV propulsion technology, performance (including mass), and reliability
- OS and MAV Payload Assembly (MPA): Tube accommodation, OS protection and ejection into Mars orbit
- Planetary protection design and implementation strategies
- Surface plume interaction during landing

Propulsive Platform Lander

Skycrane Delivered Lander

Fetch Rover Concept

Mission Objectives

- Acquire sample tubes from the Mars surface
- Surface mission duration: 210 sols max
- Average traverse distance required: 150-250 m/sol

Key Specifications (based on NASA conceptual design)

- Rover Mass: 120 kg (Not to Exceed)
- Stowed Volume: ~1 m³
- Power Architecture: Solar powered, 1.5 m²
- Navigation: Image processing to support autonomous driving
- Telecom: UHF relay to orbiters

M2020 Delivery

 M2020 as fetch was studied, concluded that that option is feasible and that most robust mission approach is to maintain both fetch rover and M2020

Sample Tube and Orbiting Sample (OS) Container Concept

- Return Sample Tube Assembly (RSTA) is designed to carry Mars material samples in pristine state from time of sample acquisition
- OS is designed to hold desired number of samples, currently 20-30
 - Tubes are inserted by Sample Transfer Arm on lander
 - OS then must be assembled & launched to orbit by MAV inside MAV Payload Assembly (MPA)
 - Hold samples securely through launch to Earth landing
- Maintain samples within environmental constraints
 - Sample temperature < +30 °C
 - Keep magnetic fields < ½ mT at sample
- OS must accommodate rendezvous and tracking by visual wavelength cameras on orbiter
 - Sufficient albedo to be detected in Mars orbit

Return Sample Tube Assembly (RSTA)

Mars Ascent Vehicle (MAV) Concept

Mission Objectives

- Launch from all candidate M2020 landing sites
- Inject OS into >350 km altitude orbit, > 25 deg inclination

Technology Development Status

- Currently, two contractors are working to demonstrate performance of a single stage to orbit hybrid propulsion technology concept
 - Including ignition and stable combustion for the mission duration and a single restart
 - Both are achieving ignition with augmented combustion energy sources
- Developing demonstration of low temperature solid

Key Trade Studies in Work

- Overall vehicle design to meet Mars mass and volume constraints
- Thrust vector control
- Design for environments

Current hybrid concept ~400 kg Gross Liftoff Mass

MAV Hybrid Test

Trades Influenced by Backward Planetary Protection

OS

- First layer of containment
- On-orbit dust sterilization
- Opportunity for gas and dust samples volume?
- Possible BTC I/Fs

CCRS (ERO Payload)

- Mass impact on ERO performance
- BTC in orbit
- Containment approaches
- Entry/Landing environment (including MMOD) and performance

MAV

- Target Orbit (Altitude, Inclination)
- Dust transport and transfer
- BTC interface

BACKWARD PP

- Dust mgnt (surface and/or orbit)
- BTC approaches
- Sterilization techniques
- Containment assurance and analysis approaches (use of PRA and other tools
- Possible crewed mission relationships
- Certification processes

ERO

- Payload mass and staging
- On-orbit dust sterilization
- Operational reliability

Earth Return Strategy and Targeting

- Direct Earth Return
- Cis-Lunar Delivery w/Orion Return
- ERO targeting and divert capability
 MMOD mitigation

Lander

- Tube transfer and dust control (e.g. MAV igloo)
- Possible BTC interfaces